Source Code
These source-code files are part of a reconstructed copy of Luminary 96, the
original release of the Apollo 11 Lunar Module (LM) Apollo Guidance Computer
(AGC) software.
The reconstruction began with reconstructed source code for Luminary 97. Changes between revisions 96 and 97 were backed out, as described by anomal report LNY-59. transcribed from a digitized copy of that program. The reconstruction was verified by matching memory-bank checksums to those listed in drawing 2021152D. Note that page numbers in the reconstructed code match those on the Luminary 099 revision 001 printout, although the added code would likely have changed page numbers for a real Luminary 96 listing. Comments from the original source code are prefixed with a single '#' symbol, whereas comments added later are prefixed by "##" or "###". Report any errors noted by creating an issue report at the Virtual AGC project's GitHub repository. |
013112,000002: ## Copyright: Public domain.
013113,000003: ## Filename: LEM_GEOMETRY.agc
013114,000004: ## Purpose: A section of Luminary revision 96.
013115,000005: ## It is part of the reconstructed source code for the
013116,000006: ## original release of the flight software for the Lunar
013117,000007: ## Module's (LM) Apollo Guidance Computer (AGC) for Apollo 11.
013118,000008: ## The code has been recreated from a previously reconstructed
013119,000009: ## copy of Luminary 97 by undoing changes described in anomaly
013120,000010: ## report LNY-59. The code has been adapted such that the
013121,000011: ## resulting bugger words exactly match those specified for
013122,000012: ## Luminary 96 in NASA drawing 2021152D, which gives relatively
013123,000013: ## high confidence that the reconstruction is correct.
013124,000014: ## Reference: pp. 320-325
013125,000015: ## Assembler: yaYUL
013126,000016: ## Contact: Ron Burkey <info@sandroid.org>.
013127,000017: ## Website: www.ibiblio.org/apollo/index.html
013128,000018: ## Mod history: 2019-08-04 MAS Created from Luminary 97.
013129,000019:
Page 320 |
013131,000021: 23,2041 BANK 23
013132,000022: 13,2000 SETLOC LEMGEOM
013133,000023: 13,2000 BANK
013134,000024:
013135,000025: 13,2070 30,2000 SBANK= LOWSUPER
013136,000026: 13,2070 E5,1642 EBANK= XSM
013137,000027:
013138,000028: # THESE TWO ROUTINES COMPUTE THE ACTUAL STATE VECTOR FOR LM,CSM BY ADDING
013139,000029: # THE CONIC R,V AND THE DEVIATIONS R,V. THE STATE VECTORS ARE CONVERTED TO
013140,000030: # METERS B-29 AND METERS/CSEC B-7 AND STORED APPROPRIATELY IN RN,VN OR
013141,000031: # R-OTHER,V-OTHER FOR DOWNLINK. THE ROUTINES NAMES ARE SWITCHED IN THE
013142,000032: # OTHER VEHICLES COMPUTER.
013143,000033:
013144,000034: # INPUT
013145,000035: # STATE VECTOR IN TEMPORARY STORAGE AREA
013146,000036: # IF STATE VECTOR IS SCALED POS B27 AND VEL B5
013147,000037: # SET X2 TO +2
013148,000038: # IF STATE VECTOR IS SCALED POS B29 AND VEL B7
013149,000039: # SET X2 TO 0
013150,000040:
013151,000041: # OUTPUT
013152,000042: # R(T) IN RN, V(T) IN VN, T IN PIPTIME
013153,000043: # OR
013154,000044: # R(T) IN R-OTHER, V(T) IN V-OTHER (T IS DEFINED BY T-OTHER)
013155,000045:
013156,000046: 13,2070 COUNT* $$/GEOM
013157,000047: 13,2070 43414 SVDWN2 BOF RVQ # SW=1=AVETOMID DOING W-MATRIX INTEG.
013158,000048: 13,2071 04756 AVEMIDSW
013159,000049: 13,2072 26073 +1
013160,000050: 13,2073 53775 VLOAD VSL*
013161,000051: 13,2074 01521 TDELTAV
013162,000052: 13,2075 57605 0 -7,2
013163,000053: 13,2076 53655 VAD VSL*
013164,000054: 13,2077 01535 RCV
013165,000055: 13,2100 57576 0,2
013166,000056: 13,2101 25221 STOVL RN
013167,000057: 13,2102 01527 TNUV
013168,000058: 13,2103 53257 VSL* VAD
013169,000059: 13,2104 57602 0 -4,2
013170,000060: 13,2105 01543 VCV
013171,000061: 13,2106 77657 VSL*
013172,000062: 13,2107 57576 0,2
013173,000063: 13,2110 15227 STODL VN
013174,000064: 13,2111 01517 TET
013175,000065: 13,2112 01235 STORE PIPTIME
013176,000066: 13,2113 77616 RVQ
Page 321 |
013178,000068: 13,2114 53775 SVDWN1 VLOAD VSL*
013179,000069: 13,2115 01521 TDELTAV
013180,000070: 13,2116 57605 0 -7,2
013181,000071: 13,2117 53655 VAD VSL*
013182,000072: 13,2120 01535 RCV
013183,000073: 13,2121 57576 0,2
013184,000074: 13,2122 25720 STOVL R-OTHER
013185,000075: 13,2123 01527 TNUV
013186,000076: 13,2124 53257 VSL* VAD
013187,000077: 13,2125 57602 0 -4,2
013188,000078: 13,2126 01543 VCV
013189,000079: 13,2127 77657 VSL*
013190,000080: 13,2130 57576 0,2
013191,000081: 13,2131 01726 STORE V-OTHER
013192,000082: 13,2132 77616 RVQ
013193,000083:
Page 322 |
013195,000085: # THE FOLLOWING ROUTINE TAKES A HALF UNIT TARGET VECTOR REFERRED TO NAV BASE COORDINATES AND FINDS BOTH
013196,000086: # GIMBAL ORIENTATIONS AT WHICH THE RR MIGHT SIGHT THE TARGET. THE GIMBAL ANGLES CORRESPONDING TO THE PRESENT MODE
013197,000087: # ARE LEFT IN MODEA AND THOSE WHICH WOULD BE USED AFTER A REMODE IN MODEB. THIS ROUTINE ASSUMES MODE 1 IS TRUNNION
013198,000088: # ANGLE LESS THAN 90 DEGS IN ABS VALUE WITH ARBITRARY SHAFT, WITH A CORRESPONDING DEFINITION FOR MODE 2. MODE
013199,000089: # SELECTION AND LIMIT CHECKING ARE DONE ELSEWHERE.
013200,000090:
013201,000091: # THE MODE 1 CONFIGURATION IS CALCULATED FROM THE VECTOR AND THEN MODE 2 IS FOUND USING THE RELATIONS
013202,000092:
013203,000093: # S(2) = 180 + S(1)
013204,000094: # T(2) = 180 - T(1)
013205,000095:
013206,000096: # THE VECTOR ARRIVES IN MPAC WHERE TRG*SMNG OR *SMNB* WILL HAVE LEFT IT.
013207,000097:
013208,000098: 13,2133 00041 RRANGLES STORE 32D
013209,000099: 13,2134 57545 DLOAD DCOMP # SINCE WE WILL FIND THE MODE 1 SHAFT
013210,000100: 13,2135 00043 34D # ANGLE LATER, WE CAN FIND THE MODE 1
013211,000101: 13,2136 67401 SETPD ASIN # TRUNNION BY SIMPLY TAKING THE ARCSIN OF
013212,000102: 13,2137 00001 0 # THE Y COMPONENT, THE ASIN GIVING AN
013213,000103: 13,2140 44206 PUSH BDSU # ANSWER WHOSE ABS VAL IS LESS THAN 90 DEG
013214,000104: 13,2141 24005 LODPHALF
013215,000105: 13,2142 14005 STODL 4 # MODE 2 TRUNNION TO 4.
013216,000106:
013217,000107: 13,2143 24007 LO6ZEROS
013218,000108: 13,2144 24043 STOVL 34D # UNIT THE PROJECTION OF THE VECTOR
013219,000109: 13,2145 00041 32D # IN THE X-Z PLANE
013220,000110: 13,2146 41056 UNIT BOVB # IF OVERFLOW, TARGET VECTOR IS ALONG Y
013221,000111: 13,2147 52421 LUNDESCH # CALL FOR MANEUVER UNLESS ON LUNAR SURF
013222,000112: 13,2150 14041 STODL 32D # PROJECTION VECTOR.
013223,000113: 13,2151 00041 32D
013224,000114: 13,2152 44142 SR1 STQ
013225,000115: 13,2153 00051 S2
013226,000116: 13,2154 14023 STODL SINTH # USE ARCTRIG SINCE SHAFT COULD BE ARB.
013227,000117: 13,2155 00045 36D
013228,000118: 13,2156 77742 SR1
013229,000119: 13,2157 34021 STCALL COSTH
013230,000120: 13,2160 47320 ARCTRIG
Page 323 |
013232,000122: 13,2161 43206 PUSH DAD # MODE 1 SHAFT TO 2.
013233,000123: 13,2162 24005 LODPHALF
013234,000124: 13,2163 24007 STOVL 6
013235,000125: 13,2164 00005 4
013236,000126: 13,2165 77634 RTB # FIND MODE 2 CDU ANGLES.
013237,000127: 13,2166 21635 2V1STO2S
013238,000128: 13,2167 25112 STOVL MODEB
013239,000129: 13,2170 00001 0
013240,000130: 13,2171 77634 RTB # MODE 1 ANGLES TO MODE A.
013241,000131: 13,2172 21635 2V1STO2S
013242,000132: 13,2173 01110 STORE MODEA
013243,000133: 13,2174 77776 EXIT
013244,000134:
013245,000135: 13,2175 40110 CS RADMODES # SWAP MODEA AND MODEB IF RR IN MODE 2.
013246,000136: 13,2176 74740 MASK ANTENBIT
013247,000137: 13,2177 10000 CCS A
013248,000138: 13,2200 12204 TCF +4
013249,000139:
013250,000140: 13,2201 53110 DXCH MODEA
013251,000141: 13,2202 53112 DXCH MODEB
013252,000142: 13,2203 53110 DXCH MODEA
013253,000143:
013254,000144: 13,2204 06037 TC INTPRET
013255,000145: 13,2205 77650 GOTO
013256,000146: 13,2206 00051 S2
Page 324 |
013258,000148: # GIVEN RR TRUNNION AND SHAFT (T,S) IN TANGNB,+1, FIND THE ASSOCIATED
013259,000149: # LINE OF SIGHT IN NAV BASE AXES. THE HALF UNIT VECTOR, .5(SIN(S)COS(T),
013260,000150: # -SIN(T),COS(S)COS(T)) IS LEFT IN MPAC AND 32D.
013261,000151:
013262,000152: 23,2000 SETLOC INFLIGHT
013263,000153: 23,2000 BANK
013264,000154:
013265,000155: 23,2041 COUNT* $$/GEOM
013266,000156:
013267,000157: 23,2041 47135 RRNB SLOAD RTB
013268,000158: 23,2042 03753 TANGNB
013269,000159: 23,2043 21576 CDULOGIC
013270,000160: 23,2044 41401 SETPD PUSH # TRUNNION ANGLE TO 0
013271,000161: 23,2045 00001 0
013272,000162: 23,2046 57556 SIN DCOMP
013273,000163: 23,2047 14043 STODL 34D # Y COMPONENT
013274,000164:
013275,000165: 23,2050 41546 COS PUSH # .5 COS(T) TO 0
013276,000166: 23,2051 47135 SLOAD RTB
013277,000167: 23,2052 03754 TANGNB +1
013278,000168: 23,2053 21576 CDULOGIC
013279,000169: 23,2054 71406 RRNB1 PUSH COS # SHAFT ANGLE TO 2
013280,000170: 23,2055 72405 DMP SL1
013281,000171: 23,2056 00001 0
013282,000172: 23,2057 14045 STODL 36D # Z COMPONENT
013283,000173:
013284,000174: 23,2060 41356 SIN DMP
013285,000175: 23,2061 77752 SL1
013286,000176: 23,2062 24041 STOVL 32D
013287,000177: 23,2063 00041 32D
013288,000178: 23,2064 77616 RVQ
013289,000179:
013290,000180: # THIS ENTRY TO RRNB REQUIRES THE TRUNNION AND SHAFT ANGLES IN MPAC AND MPAC +1 RESPECTIVELY
013291,000181:
013292,000182: 23,2065 14025 RRNBMPAC STODL 20D # SAVE SHAFT CDU IN 21.
013293,000183: 23,2066 00155 MPAC # SET MODE TO DP. (THE PRECEEDING STORE
013294,000184: # MAY BE DP, TP OR VECTOR.)
013295,000185: 23,2067 40234 RTB SETPD
013296,000186: 23,2070 21576 CDULOGIC
013297,000187: 23,2071 00001 0
013298,000188: 23,2072 73406 PUSH SIN # TRUNNION ANGLE TO 0
013299,000189: 23,2073 77676 DCOMP
013300,000190: 23,2074 14043 STODL 34D # Y COMPONENT
013301,000191: 23,2075 41546 COS PUSH # .5COS(T) TO 0
013302,000192: 23,2076 47135 SLOAD RTB # PICK UP CDU'S.
013303,000193: 23,2077 00026 21D
013304,000194: 23,2100 21576 CDULOGIC
013305,000195: 23,2101 77650 GOTO
013306,000196: 23,2102 46054 RRNB1
Page 325
This page has nothing on it. |
013309,000199:
013310,000200:
End of include-file LEM_GEOMETRY.agc. Parent file is MAIN.agc